SCIY.Org Archives

This is an archived material originally posted on sciy.org which is no longer active. The title, content, author, date of posting shown below, all are as per the sciy.org records
'The Road to Reality,' by Roger Penrose

Originally posted on sciy.org by Ron Anastasia on Wed 18 Apr 2007 03:42 PM PDT  



The Road to Reality : A Complete Guide to the Laws of the Universe
 
See larger image
 




Editorial Reviews

Amazon.com
If Albert Einstein were alive, he would have a copy of The Road to Reality on his bookshelf. So would Isaac Newton. This may be the most complete mathematical explanation of the universe yet published, and Roger Penrose richly deserves the accolades he will receive for it. That said, let us be perfectly clear: this is not an easy book to read. The number of people in the world who can understand everything in it could probably take a taxi together to Penrose's next lecture. Still, math-friendly readers looking for a substantial and possibly even thrillingly difficult intellectual experience should pick up a copy (carefully--it's over a thousand pages long and weighs nearly 4 pounds) and start at the beginning, where Penrose sets out his purpose: to describe "the search for the underlying principles that govern the behavior of our universe." Beginning with the deceptively simple geometry of Pythagoras and the Greeks, Penrose guides readers through the fundamentals--the incontrovertible bricks that hold up the fanciful mathematical structures of later chapters. From such theoretical delights as complex-number calculus, Riemann surfaces, and Clifford bundles, the tour takes us quickly on to the nature of spacetime. The bulk of the book is then devoted to quantum physics, cosmological theories (including Penrose's favored ideas about string theory and universal inflation), and what we know about how the universe is held together. For physicists, mathematicians, and advanced students, The Road to Reality is an essential field guide to the universe. For enthusiastic amateurs, the book is a project to tackle a bit at a time, one with unimaginable intellectual rewards. --Therese Littleton

From Publishers Weekly
At first, this hefty new tome from Oxford physicist Penrose (The Emperor's NewMind) looks suspiciously like a textbook, complete with hundreds of diagrams and pages full of mathematical notation. On a closer reading, however, one discovers that the book is something entirely different and far more remarkable. Unlike a textbook, the purpose of which is purely to impart information, this volume is written to explore the beautiful and elegant connection between mathematics and the physical world. Penrose spends the first third of his book walking us through a seminar in high-level mathematics, but only so he can present modern physics on its own terms, without resorting to analogies or simplifications (as he explains in his preface, "in modern physics, one cannot avoid facing up to the subtleties of much sophisticated mathematics"). Those who work their way through these initial chapters will find themselves rewarded with a deep and sophisticated tour of the past and present of modern physics. Penrose transcends the constraints of the popular science genre with a unique combination of respect for the complexity of the material and respect for the abilities of his readers. This book sometimes begs comparison with Stephen Hawking's A Brief History of Time, and while Penrose's vibrantly challenging volume deserves similar success, it will also likely lie unfinished on as many bookshelves as Hawking's. For those hardy readers willing to invest their time and mental energies, however, there are few books more deserving of the effort. 390 illus. (Feb. 24)
Copyright © Reed Business Information, a division of Reed Elsevier Inc. All rights reserved.

Review
Praise for The Road to Reality by Roger Penrose

“A truly remarkable book...Penrose does much to reveal the beauty and subtlety that connects nature and the human imagination, demonstrating that the quest to understand the reality of our physical world, and the extent and limits of our mental capacities, is an awesome, never-ending journey rather than a one-way cul-de-sac.”
—London Sunday Times

“Penrose’s work is genuinely magnificent, and the most stimulating book I have read in a long time.”
—Scotland on Sunday

“Science needs more people like Penrose, willing and able to point out the flaws in fashionable models from a position of authority and to signpost alternative roads to follow.”
—The Independent

“What a joy it is to read a book that doesn't simplify, doesn't dodge the difficult questions, and doesn't always pretend to have answers...Penrose’s appetite is heroic, his knowledge encyclopedic, his modesty a reminder that not all physicists claim to be able to explain the world in 250 pages.”
—London Times

“For physics fans, the high point of the year will undoubtedly be The Road to Reality.”
—Guardian

Book Description
From one of our greatest living scientists, a magnificent book that provides, for the serious lay reader, the most comprehensive and sophisticated account we have yet had of the physical universe and the essentials of its underlying mathematical theory.

Since the earliest efforts of the ancient Greeks to find order amid the chaos around us, there has been continual accelerated progress toward understanding the laws that govern our universe. And the particularly important advances made by means of the revolutionary theories of relativity and quantum mechanics have deeply altered our vision of the cosmos and provided us with models of unprecedented accuracy.

What Roger Penrose so brilliantly accomplishes in this book is threefold. First, he gives us an overall narrative description of our present understanding of the universe and its physical behaviors–from the unseeable, minuscule movement of the subatomic particle to the journeys of the planets and the stars in the vastness of time and space.

Second, he evokes the extraordinary beauty that lies in the mysterious and profound relationships between these physical behaviors and the subtle mathematical ideas that explain and interpret them.

Third, Penrose comes to the arresting conclusion–as he explores the compatibility of the two grand classic theories of modern physics–that Einstein’s general theory of relativity stands firm while quantum theory, as presently constituted, still needs refashioning.

Along the way, he talks about a wealth of issues, controversies, and phenomena; about the roles of various kinds of numbers in physics, ideas of calculus and modern geometry, visions of infinity, the big bang, black holes, the profound challenge of the second law of thermodynamics, string and M theory, loop quantum gravity, twistors, and educated guesses about science in the near future. In The Road to Reality he has given us a work of enormous scope, intention, and achievement–a complete and essential work of science

About the Author
Roger Penrose is Emeritus Rouse Ball Professor of Mathematics at Oxford University. He has received a number of prizes and awards, including the 1988 Wolf Prize for physics, which he shared with Stephen Hawking for their joint contribution to our understanding of the universe. His books include The Emperor’s New Mind, Shadows of the Mind, and The Nature of Space and Time, which he wrote with Hawking. He has lectured extensively at universities throughout America. He lives in Oxford.


Excerpt. © Reprinted by permission. All rights reserved.

Preface

The purpose of this book is to convey to the reader some feeling for what is surely one of the most important and exciting voyages of discovery that humanity has embarked upon. This is the search for the underlying principles that govern the behaviour of our universe. It is a voyage that has lasted for more than two-and-a-half millennia, so it should not surprise us that substantial progress has at last been made. But this journey has proved to be a profoundly difficult one, and real understanding has, for the most part, come but slowly. This inherent difficulty has led us in many false directions; hence we should learn caution. Yet the 20th century has delivered us extraordinary new insights–some so impressive that many scientists of today have voiced the opinion that we may be close to a basic understanding of all the underlying principles of physics. In my descriptions of the current fundamental theories, the 20th century having now drawn to its close, I shall try to take a more sober view. Not all my opinions may be welcomed by these ‘optimists’, but I expect further changes of direction greater even than those of the last century.

The reader will find that in this book I have not shied away from presenting mathematical formulae, despite dire warnings of the severe reduction in readership that this will entail. I have thought seriously about this question, and have come to the conclusion that what I have to say cannot reasonably be conveyed without a certain amount of mathematical notation and the exploration of genuine mathematical concepts. The understanding that we have of the principles that actually underlie the behaviour of our physical world indeed depends upon some appreciation of its mathematics. Some people might take this as a cause for despair, as they will have formed the belief that they have no capacity for mathematics, no matter at how elementary a level. How could it be possible, they might well argue, for them to comprehend the research going on at the cutting edge of physical theory if they cannot even master the manipulation of fractions? Well, I certainly see the difficulty.

Yet I am an optimist in matters of conveying understanding. Perhaps I am an incurable optimist. I wonder whether those readers who cannot manipulate fractions–or those who claim that they cannot manipulate fractions–are not deluding themselves at least a little, and that a good proportion of them actually have a potential in this direction that they are not aware of. No doubt there are some who, when confronted with a line of mathematical symbols, however simply presented, can see only the stern face of a parent or teacher who tried to force into them a non-comprehending parrot-like apparent competence–a duty, and a duty alone–and no hint of the magic or beauty of the subject might be allowed to come through. Perhaps for some it is too late; but, as I say, I am an optimist and I believe that there are many out there, even among those who could never master the manipulation of fractions, who have the capacity to catch some glimpse of a wonderful world that I believe must be, to a significant degree, genuinely accessible to them.

One of my mother’s closest friends, when she was a young girl, was among those who could not grasp fractions. This lady once told me so herself after she had retired from a successful career as a ballet dancer. I was still young, not yet fully launched in my activities as a mathematician, but was recognized as someone who enjoyed working in that subject. ‘It’s all that cancelling’, she said to me, ‘I could just never get the hang of cancelling.’ She was an elegant and highly intelligent woman, and there is no doubt in my mind that the mental qualities that are required in comprehending the sophisticated choreography that is central to ballet are in no way inferior to those which must be brought to bear on a mathematical problem. So, grossly overestimating my expositional abilities, I attempted, as others had done before, to explain to her the simplicity and logical nature of the procedure of ‘cancelling’.

I believe that my efforts were as unsuccessful as were those of others. (Incidentally, her father had been a prominent scientist, and a Fellow of the Royal Society, so she must have had a background adequate for the comprehension of scientific matters. Perhaps the ‘stern face’ could have been a factor here, I do not know.) But on reflection, I now wonder whether she, and many others like her, did not have a more rational hang-up–one that with all my mathematical glibness I had not noticed. There is, indeed, a profound issue that one comes up against again and again in mathematics and in mathematical physics, which one first encounters in the seemingly innocent operation of cancelling a common factor from the numerator and denominator of an ordinary numerical fraction.

Those for whom the action of cancelling has become second nature, because of repeated familiarity with such operations, may find themselves insensitive to a difficulty that actually lurks behind this seemingly simple procedure. Perhaps many of those who find cancelling mysterious are seeing a certain profound issue more deeply than those of us who press onwards in a cavalier way, seeming to ignore it. What issue is this? It concerns the very way in which mathematicians can provide an existence to their mathematical entities and how such entities may relate to physical reality.

I recall that when at school, at the age of about 11, I was somewhat taken aback when the teacher asked the class what a fraction (such as 3/8) actually is! Various suggestions came forth concerning the dividing up of pieces of pie and the like, but these were rejected by the teacher on the (valid) grounds that they merely referred to imprecise physical situations to which the precise mathematical notion of a fraction was to be applied; they did not tell us what that clear-cut mathematical notion actually is. Other suggestions came forward, such as 3/8 is ‘something with a 3 at the top and an 8 at the bottom with a horizontal line in between’ and I was distinctly surprised to find that the teacher seemed to be taking these suggestions seriously! I do not clearly recall how the matter was finally resolved, but with the hindsight gained from my much later experiences as a mathematics undergraduate, I guess my schoolteacher was making a brave attempt at telling us the definition of a fraction in terms of the ubiquitous mathematical notion of an equivalence class.

What is this notion? How can it be applied in the case of a fraction and tell us what a fraction actually is? Let us start with my classmate’s ‘something with a 3 at the top and an 8 on the bottom’. Basically, this is suggesting to us that a fraction is specified by an ordered pair of whole numbers, in this case the numbers 3 and 8. But we clearly cannot regard the fraction as being such an ordered pair because, for example, the fraction 6/16 is the same number as the fraction 3/8, whereas the pair (6, 16) is certainly not the same as the pair (3, 8). This is only an issue of cancelling; for we can write 6/16 as 3x2/8x2 and then cancel the 2 from the top and the bottom to get 3/8. Why are we allowed to do this and thereby, in some sense, ‘equate’ the pair (6, 16) with the pair (3, 8)? The mathematician’s answer–which may well sound like a cop-out–has the cancelling rule just built in to the definition of a fraction: a pair of whole numbers (a x n, bn) is deemed to represent the same fraction as the pair (a, b) whenever n is any non-zero whole number (and where we should not allow b to be zero either).

But even this does not tell us what a fraction is; it merely tells us something about the way in which we represent fractions. What is a fraction, then? According to the mathematician’s ‘‘equivalence class’’ notion, the fraction 3/8, for example, simply is the infinite collection of all
pairs

(3, 8), ( – 3, – 8), (6, 16), ( – 6, – 16), (9, 24), ( – 9, – 24), (12, 32), . . . ,

where each pair can be obtained from each of the other pairs in the list by repeated application of the above cancellation rule.* [ * This is called an ‘equivalence class’ because it actually is a class of entities (the entities, in this particular case, being pairs of whole numbers), each member of which is deemed to be equivalent, in a specified sense, to each of the other members.] We also need definitions telling us how to add, subtract, and multiply such infinite collections of pairs of whole numbers, where the normal rules of algebra hold, and how to identify the whole numbers themselves as particular types of
fraction.

This definition covers all that we mathematically need of fractions (such as 1/2 being a number that, when added to itself, gives the number 1, etc.), and the operation of cancelling is, as we have seen, built into the definition. Yet it seems all very formal and we may indeed wonder whether it really captures the intuitive notion of what a fraction is. Although this ubiquitous equivalence class procedure, of which the above illustration is just a particular instance, is very powerful as a pure-mathematical tool for establishing consistency and mathematical existence, it can provide us with very topheavy-looking entities. It hardly conveys to us the intuitive notion of what 3/8 is, for example! No wonder my mother’s friend was confused.

In my descriptions of mathematical notions, I shall try to avoid, as far as I can, the kind of mathematical pedantry that leads us to define a fraction in terms of an ‘infinite class of pairs’ even though it certainly has its value in mathematical rigour and precision. In my descriptions here I shall be more concerned with conveying the idea ...
x

Attachment: