SCIY.Org Archives

This is an archived material originally posted on sciy.org which is no longer active. The title, content, author, date of posting shown below, all are as per the sciy.org records
New direct-drive turbines to lower cost of offshore wind energy.

Originally posted on sciy.org by Ron Anastasia on Fri 25 Sep 2009 12:27 PM PDT  

(Excerpted from an article on the MIT Technology Review website)

Wednesday, September 23, 2009
GE Grabs Gearless Wind Turbines
New direct-drive turbines promise to lower the cost of offshore wind energy.
By Prachi Patel

 
Northern wind: ScanWind has installed turbines along the Norwegian coast.
Credit: GE 

With a new purchase, GE is betting on an early-stage turbine technology that could make offshore wind farms cheaper to maintain. The acquisition of ScanWind, based in Trondheim, Norway, has also secured GE a foothold in the growing offshore wind energy market.

Instead of gearboxes, ScanWind uses a novel direct-drive generator technology in its 3.5-megawatt turbines. This makes the turbines more reliable, the company says, by cutting downtime and repair costs--an especially important consideration for turbines offshore, where it's more expensive to send technicians for maintenance. ScanWind has been testing the turbines on the Norwegian coast since 2003.

GE, based in Fairfield, CT, is the world's second-largest maker of wind turbines, with more than 12,000 turbines installed globally. But GE's offshore wind energy portfolio has been minimal so far, and the company wants to expand its offshore offerings. By acquiring ScanWind, transferring its expertise and understanding of onshore wind, and adding technologies such as remote monitoring and sensing, GE hopes it can make a solid, cost-effective offshore wind product.


In conventional wind turbines, the blades spin a shaft that is connected through a gearbox to the generator. The gearbox converts the turning speed of the blades--15 to 20 rotations per minute for a large, one-megawatt turbine--into the faster 1,800 rotations per minute that the generator needs to generate electricity. "Wind turbines are very different than any other gearbox application," says Sandy Butterfield, chief engineer of the wind program at the National Renewable Energy Laboratory in Golden, CO. "You're going from a very low speed to a high speed." Typically it's the opposite.

The multiple wheels and bearings in a wind turbine gearbox suffer tremendous stress because of wind turbulence, and a small defect in any one component can bring the turbine to a halt. This makes the gearbox the most high-maintenance part of a turbine. Gearboxes in offshore turbines, which face higher wind speeds, are even more vulnerable than those in onshore turbines. Butterfield is leading a gearbox-reliability study with turbine makers to identify design weaknesses that could be avoided.

ScanWind's turbine design gets rid of the gearbox completely. Instead, the rotor shaft is attached directly to the generator, which spins at the same speed as the blades.

In a turbine generator, magnets spin around a coil to produce current--the faster the magnets spin, the more current is induced in the coil. To make up for a direct-drive generator's slower spinning speed, the magnets in ScanWind's turbine circle with a larger diameter, boosting the amount of current that is induced in the generator by increasing the torque.

"Eliminating the gearbox from the wind turbine [removes] the technically most complicated part of the machine, inherently improving reliability," says Henrik Stiesdal, chief technology officer of Siemens AG. Furthermore, if a permanent magnet is used in the generator, as is the case with newer turbines, the efficiency goes up even more. That's because, unlike today's electromagnetic generators, permanent magnets don't need power.

Direct-drive generators currently cost more than geared systems and are 15 to 20 percent heavier. Still, GE's decision to buy ScanWind is smart, says Butterfield. "Offshore machines are so expensive in terms of maintenance that some people are thinking the tradeoff tilts in favor of direct-drive generators," he says. "I am optimistic that there is technology out there that's going to help bring direct-drive generators down in parity with the weight and cost of geared systems." ...

(Article continues at link below.)


This article is excerpted from the MIT Technology Review website:  https://www.technologyreview.com/

The full article & online comments can be viewed at: https://www.technologyreview.com/energy/23517/


Attachment: